- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Borkar, Vivek (1)
-
Chen, Shuhang (1)
-
Devraj, Adithya (1)
-
Kontoyiannis, Ioannis (1)
-
Meyn, Sean (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Ramanan, Kavita (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ramanan, Kavita (Ed.)The paper concerns the stochastic approximation recursion, \[ \theta_{n+1}= \theta_n + \alpha_{n + 1} f(\theta_n, \Phi_{n+1}) \,,\quad n\ge 0, \] where the {\em estimates} $$\{ \theta_n\} $$ evolve on $$\Re^d$$, and $$\bfPhi \eqdef \{ \Phi_n \}$$ is a stochastic process on a general state space, satisfying a conditional Markov property that allows for parameter-dependent noise. In addition to standard Lipschitz assumptions and conditions on the vanishing step-size sequence, it is assumed that the associated \textit{mean flow} $$ \ddt \odestate_t = \barf(\odestate_t)$$ is globally asymptotically stable, with stationary point denoted $$\theta^*$$. The main results are established under additional conditions on the mean flow and an extension of the Donsker-Varadhan Lyapunov drift condition known as~(DV3): (i) A Lyapunov function is constructed for the joint process $$\{\theta_n,\Phi_n\}$$ that implies convergence of the estimates in $$L_4$$. (ii) A functional central limit theorem (CLT) is established, as well as the usual one-dimensional CLT for the normalized error. Moment bounds combined with the CLT imply convergence of the normalized covariance $$\Expect [ z_n z_n^\transpose ]$$ to the asymptotic covariance $$\SigmaTheta$$ in the CLT, where $$z_n\eqdef (\theta_n-\theta^*)/\sqrt{\alpha_n}$$. (iii) The CLT holds for the normalized averaged parameters $$\zPR_n\eqdef \sqrt{n} (\thetaPR_n -\theta^*)$$, with $$\thetaPR_n \eqdef n^{-1} \sum_{k=1}^n\theta_k$$, subject to standard assumptions on the step-size. Moreover, the covariance of $$\zPR_n$$ converges to $$\SigmaPR$$, the minimal covariance of Polyak and Ruppert. (iv) An example is given where $$f$$ and $$\barf$$ are linear in $$\theta$$, and $$\bfPhi$$ is a geometrically ergodic Markov chain but does not satisfy~(DV3). While the algorithm is convergent, the second moment of $$\theta_n$$ is unbounded and in fact diverges.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
